Support Vector Machine Classification using Mahalanobis Distance Function

نویسندگان

  • Hetal Bhavsar
  • Amit Ganatra
چکیده

Support Vector Machine (SVM) is a powerful technique for data classification. The SVM constructs an optimal separating hyper-plane as a decision surface, to divide the data points of different categories in the vector space. The Kernel functions are used to extend the concept of the optimal separating hyper-plane for the non-linearly separable cases so that the data can be linearly separable. The different kernel functions have different characteristics and hence the performance of SVM is highly influenced by the selection of kernel functions. Thus, despite its good theoretical foundation, one of the critical problems of the SVM is the selection of the appropriate kernel function in order to guarantee high accuracy of the classifier. This paper presents the classification framework, that uses SVM in the training phase and Mahalanobolis distance in the testing phase, in order to design a classifier which has low impact of kernel function on the classification accuracy. The Mahalanobis distance is used to replace the optimal separating hyperplane as the classification decision making function in SVM. The proposed approach is referred to as Euclidean Distance towards the Center (EDC_SVM). This is because the Mahalanobis distance from a point to the mean of the group is also called as Euclidean distance towards the center of data set. We have tested the performance of EDC_SVM on several datasets. The experimental results show that the accuracy of the EDC_SVM classifier to have a low impact on the implementation of kernel functions. The proposed approach also achieved the drastic reduction in the classification time, as the classification of a new data point depends only on the mean of Support Vectors (SVs) of each category.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robustified distance based fuzzy membership function for support vector machine classification

Fuzzification of support vector machine has been utilized to deal with outlier and noise problem. This importance is achieved, by the means of fuzzy membership function, which is generally built based on the distance of the points to the class centroid. The focus of this research is twofold. Firstly, by taking the advantage of robust statistics in the fuzzy SVM, more emphasis on reducing the im...

متن کامل

Outlier Detection for Support Vector Machine using Minimum Covariance Determinant Estimator

The purpose of this paper is to identify the effective points on the performance of one of the important algorithm of data mining namely support vector machine. The final classification decision has been made based on the small portion of data called support vectors. So, existence of the atypical observations in the aforementioned points, will result in deviation from the correct decision. Thus...

متن کامل

Comparison of different algorithms for land use mapping in dry climate using satellite images: a case study of the Central regions of Iran

The objective of this research was to determine the best model and compare performances in terms of producing landuse maps from six supervised classification algorithms. As a result, different algorithms such as the minimum distance ofmean (MDM), Mahalanobis distance (MD), maximum likelihood (ML), artificial neural network (ANN), spectral anglemapper (SAM), and support vector machine (SVM) were...

متن کامل

Feature Selection Using Multi Objective Genetic Algorithm with Support Vector Machine

Different approaches have been proposed for feature selection to obtain suitable features subset among all features. These methods search feature space for feature subsets which satisfies some criteria or optimizes several objective functions. The objective functions are divided into two main groups: filter and wrapper methods.  In filter methods, features subsets are selected due to some measu...

متن کامل

Fault diagnosis in a distillation column using a support vector machine based classifier

Fault diagnosis has always been an essential aspect of control system design. This is necessary due to the growing demand for increased performance and safety of industrial systems is discussed. Support vector machine classifier is a new technique based on statistical learning theory and is designed to reduce structural bias. Support vector machine classification in many applications in v...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015